10 research outputs found

    Design And Characterization Of High Temperature Packaging For Wide-bandgap Semiconductor Devices

    Get PDF
    Advances in wide-bandgap semiconductor devices have increased the allowable operating temperature of power electronic systems. High-temperature devices can benefit applications such as renewable energy, electric vehicles, and space-based power electronics that currently require bulky cooling systems for silicon power devices. Cooling systems can typically be reduced in size or removed by adopting wide-bandgap semiconductor devices, such as silicon carbide. However, to do this, semiconductor device packaging with high reliability at high temperatures is necessary. Transient liquid phase (TLP) die-attach has shown in literature to be a promising bonding technique for this packaging need. In this work TLP has been comprehensively investigated and characterized to assess its viability for high-temperature power electronics applications. The reliability and durability of TLP die-attach was extensively investigated utilizing electrical resistivity measurement as an indicator of material diffusion in gold-indium TLP samples. Criteria of ensuring diffusive stability were also developed. Samples were fabricated by material deposition on glass substrates with variant Au–In compositions but identical barrier layers. They were stressed with thermal cycling to simulate their operating conditions then characterized and compared. Excess indium content in the die-attach was shown to have poor reliability due to material diffusion through barrier layers while samples containing suitable indium content proved reliable throughout the thermal cycling process. This was confirmed by electrical resistivity measurement, EDS, FIB, and SEM characterization. Thermal and mechanical characterization of TLP die-attached samples was also performed to gain a newfound understanding of the relationship between TLP design parameters and die-attach properties. Samples with a SiC diode chip TLP bonded to a copper metalized silicon nitride iv substrate were made using several different values of fabrication parameters such as gold and indium thickness, Au–In ratio, and bonding pressure. The TLP bonds were then characterized for die-attach voiding, shear strength, and thermal impedance. It was found that TLP die-attach offers high average shear force strength of 22.0 kgf and a low average thermal impedance of 0.35 K/W from the device junction to the substrate. The influence of various fabrication parameters on the bond characteristics were also compared, providing information necessary for implementing TLP die-attach into power electronic modules for high-temperature applications. The outcome of the investigation on TLP bonding techniques was incorporated into a new power module design utilizing TLP bonding. A full half-bridge inverter power module for low-power space applications has been designed and analyzed with extensive finite element thermomechanical modeling. In summary, TLP die-attach has investigated to confirm its reliability and to understand how to design effective TLP bonds, this information has been used to design a new high-temperature power electronic module

    High Temperature Packaging For Wide Bandgap Semiconductor Devices

    Get PDF
    Currently, wide bandgap semiconductor devices feature increased efficiency, higher current handling capabilities, and higher reverse blocking voltages than silicon devices while recent fabrication advances have them drawing near to the marketplace. However these new semiconductors are in need of new packaging that will allow for their application in several important uses including hybrid electrical vehicles, new and existing energy sources, and increased efficiency in multiple new and existing technologies. Also, current power module designs for silicon devices are rife with problems that must be enhanced to improve reliability. This thesis introduces new packaging that is thermally resilient and has reduced mechanical stress from temperature rise that also provides increased circuit lifetime and greater reliability for continued use to 300°C which is within operation ratings of these new semiconductors. The new module is also without problematic wirebonds that lead to a majority of traditional module failures which also introduce parasitic inductance and increase thermal resistance. Resultantly, the module also features a severely reduced form factor in mass and volume

    Thermo-Mechanical Characterization Of Au-In Transient Liquid Phase Bonding Die-Attach

    No full text
    Semiconductor die-attach techniques are critically important in the implementation of high-temperature wide-bandgap power devices. In this paper, thermal and mechanical characteristics of Au-In transient liquid phase (TLP) die-attach are examined for SiC devices. Samples with SiC diodes TLP-bonded to copper-metalized silicon nitride substrates are made using several different values for such fabrication properties as gold and indium thickness, Au/In ratio, and bonding pressure. The samples are then characterized for die-attach voiding, shear strength, and thermal impedance. It is found that the Au-In TLP-bonded samples offer a high average shear strength of 22.0 kgf and a low average thermal impedance of 0.35 K/W from the device junction through the substrate. It is also discovered that some of the fabrication properties have a greater influence on the bond characteristics than others. Overall, TLP bonding remains promising for high-temperature power electronic die-attach. © 2011-2012 IEEE

    Design Consideration Of High Temperature Sic Power Modules

    No full text
    SiC power semiconductors can safely operate at a junction temperature of 500°C. Such a high operating temperature range can substantially relax or completely eliminate the need for bulky and costly cooling components commonly used in silicon-based power electronic systems. However, a major limitation to fully realizing the potential of SiC and other wide band-gap semiconductor materials is the lack of qualified high-temperature packaging systems, particularly those with high-current and high-voltage capabilities required for power conversion applications. This paper proposes a new hybrid power module architecture that allows wide bandgap semiconductor power devices to operate at a junction temperature of 300°C. The concept is based on the use of double metal or DCB leadframes, direct leadframe-tochip bonding, and high temperature encapsulation materials. The leadframes, serving as both the external leads and the internal interconnect to the semiconductor chips, need to provide excellent high temperature stability, adequate electrical and thermal conductivity, and a coefficient of thermal expansion (CTE) closely matching that of SiC. The SiC chips are sandwiched between and bonded to the top and bottom leadframes using a brazing or adhesion process. Extensive electrical, thermal, and mechanical modeling has been performed on this new concept. Several prototypes are fabricated, and a finite element model is evaluated. Packaging architecture and materials considerations are discussed. © 2008 IEEE

    Comparison Of Au-In Transient Liquid Phase Bonding Designs For Sic Power Semiconductor Device Packaging

    No full text
    Transient liquid phase (TLP) bonding is an advanced die-attach technique for wide-bandgap power semiconductor and high-temperature packaging. TLP bonding advances current soldering techniques by raising the melting point to over 500 °C without detrimental high-lead materials. The bond also has greater reliability and rigidity due in part to a bonding temperature of 200 °C that drastically lowers the peak bond stresses. Furthermore, the thermal conductivity is increased 67 % while the bond thickness is substantially reduced, lowering the thermal resistance by an order of magnitude. This work provides an in-depth examination of the TLP fabrication methodology utilizing mechanical and thermal experimental characterization data along with thermal reliability results

    High Temperature, High Power Module Design For Wide Bandgap Semiconductors: Packaging Architecture And Materials Considerations

    No full text
    Wide bandgap power semiconductors such as SiC or GaN can safely operate at a junction temperature of 500°C. Such a high operating temperature range can substantially relax or completely eliminate the need for bulky and costly cooling components commonly used in silicon-based power electronic systems. However, a major limitation to fully realizing the potential of SiC and other wide band-gap semiconductor materials is the lack of qualified high-temperature packaging systems, particularly those with high-current and high-voltage capabilities required for power conversion applications. This paper proposes a new hybrid power module architecture that allows wide bandgap semiconductor power devices to operate at a junction temperature of 300°C. The concept is based on the use of double metal or DCB leadframes, direct leadframe-to-chip bonding, and high temperature encapsulation materials. The leadframes, serving as both the external leads and the internal interconnect to the semiconductor chips, need to provide excellent high temperature stability, adequate electrical and thermal conductivity, and a coefficient of thermal expansion (CTE) closely matching that of SiC or GaN. The SiC chips are sandwiched between and bonded to the top and bottom leadframes using a brazing or adhesion process. Extensive electrical, thermal, and mechanical modeling has been performed on this new concept. Several prototypes are fabricated and evaluated. Packaging architecture and materials considerations are discussed in detail

    Reliability Study Of Au-In Transient Liquid Phase Bonding For Sic Power Semiconductor Packaging

    No full text
    Transient liquid phase (TLP) bonding is a promising advanced die-attach technique for wide-bandgap power semiconductor and high-temperature packaging. TLP bonding advances modern soldering techniques by raising the melting point to over 500°C without detrimental high-lead materials. The bond also has greater reliability and rigidity due in part to a bonding temperature of 200°C that drastically lowers the peak bond stresses. Furthermore, the thermal conductivity is fractionally increased 67 % while the bond thickness is substantially reduced, lowering the thermal resistance by an order of magnitude or more. It is observed that Au-In TLP bonds exude excellent electrical reliability against thermal cycling degradation if designed properly as experimentally confirmed in this work. © 2011 IEEE

    Silicon Carbide High-Temperature Packaging Module Fabrication

    No full text
    A proposed method for accommodating high-temperature operation has been studied and developed through combined efforts of Advanced Power Electronics Corporation (ApECOR) and University of Central Florida. A novel process is being explored that will ultimately lead to design, fabrication, and verification of high temperature packaging for silicon carbide (SiC) power modules. The process is established to advance the operational capabilities of power modules during high-temperature conditions. Prototype modules were produced and underwent significant testing to establish capability of operation at a minimum temperature of 350 °C with probable expectation of operation in excess of 400 °C. A strenuous thermal cycle testing apparatus was established to rapidly cycle prototype modules between 80 °C and 350 °C in excess of 150 iterations per module. Analysis of the testing data did not exhibit degradation in the module performance characteristics, indicating successful module design performance. Based on the scope and goals of this research effort, further development of the design process is believed to be feasible for progression towards further development and commercialization. © 2013 IEEE

    Reliability Characterization Of Au-In Transient Liquid Phase Bonding Through Electrical Resistivity Measurement

    No full text
    Transient liquid phase (TLP) die-attach bonding is an attractive technique for high-temperature semiconductor device packaging. In this paper, the material reliability of gold-indium (Au-In) TLP bonding is investigated utilizing electrical resistivity measurement as an indicator of material diffusion. Samples were fabricated featuring a TLP reaction, representative of TLP die-attach, by depositing TLP materials on glass substrates with various Au-In compositions, but with identical barrier layers, and were then used for reliability investigation. The samples were annealed at 200 °C and then stressed with thermal cycling. Samples containing high indium content in the TLP bond are shown to have poor reliability due to material diffusion through barrier layers, whereas the samples containing sufficient gold content proved reliable through electrical resistivity measurement, energy-dispersive X-ray spectroscopy, focused ion beam, and scanning electron microscope characterization
    corecore